Intracellular degradation of unassembled asialoglycoprotein receptor subunits: a pre-Golgi, nonlysosomal endoproteolytic cleavage
نویسندگان
چکیده
The human asialoglycoprotein receptor is a heterooligomer of the two homologous subunits H1 and H2. As occurs for other oligomeric receptors, not all of the newly made subunits are assembled in the RER into oligomers and some of each chain is degraded. We studied the degradation of the unassembled H2 subunit in fibroblasts that only express H2 (45,000 mol wt) and degrade all of it. After a 30 min lag, H2 is degraded with a half-life of 30 min. We identified a 35-kD intermediate in H2 degradation; it is the COOH-terminal, exoplasmic domain of H2. After a 90-min chase, all remaining intact H2 and the 35-kD fragment were endoglycosidase H sensitive, suggesting that the cleavage generating the 35-kD intermediate occurs without translocation to the medial Golgi compartment. Treatment of cells with leupeptin, chloroquine, or NH4Cl did not affect H2 degradation. Monensin slowed but did not block degradation. Incubation at 18-20 degrees C slowed the degradation dramatically and caused an increase in intracellular H2, suggesting that a membrane trafficking event occurs before H2 is degraded. Immunofluorescence microscopy of cells with or without an 18 degrees C preincubation showed a colocalization of H2 with the ER and not with the Golgi complex. We conclude that H2 is not degraded in lysosomes and never reaches the medial Golgi compartment in an intact form, but rather degradation is initiated in a pre-Golgi compartment, possibly part of the ER. The 35-kD fragment of H2 may define an initial proteolytic cleavage in the ER.
منابع مشابه
Nonlysosomal, pre-Golgi degradation of unassembled asialoglycoprotein receptor subunits: a TLCK- and TPCK-sensitive cleavage within the ER
The human asialoglycoprotein receptor subunit H2a is cotranslationally inserted into the ER membrane. When expressed together with subunit H1 in mouse fibroblasts part forms a hetero-oligomer that is transported to the cell surface, but when expressed alone it is all rapidly degraded. Degradation is insensitive to lysosomotropic agents and the undegraded precursor is last detected in the ER reg...
متن کاملIntracellular Retention of Newly Synthesized Insulin in Yeast Is Caused by Endoproteolytic Processing in the Golgi Complex
An insulin-containing fusion protein (ICFP, encoding the yeast prepro-alpha factor leader peptide fused via a lysine-arginine cleavage site to a single chain insulin) has been expressed in Saccharomyces cerevisiae where it is inefficiently secreted. Single gene disruptions have been identified that cause enhanced immunoreactive insulin secretion (eis). Five out of six eis mutants prove to be va...
متن کاملMasking of an endoplasmic reticulum retention signal by its presence in the two subunits of the asialoglycoprotein receptor.
Human asialoglycoprotein receptor H1 and H2b subunits assemble into a hetero-oligomer that travels to the cell surface. The H2a variant on the other hand is a precursor of a cleaved soluble form that is secreted. Uncleaved H2a precursor molecules cannot exit the endoplasmic reticulum (ER), a lumenal juxtamembrane pentapeptide being responsible for their retention. Insertion of this pentapeptide...
متن کاملA pool of intracellular phosphorylated asialoglycoprotein receptors which is not involved in endocytosis.
One proposed function of the asialoglycoprotein receptor in hepatocytes is to mediate the endocytosis of galactose and N-acetylgalactosamine-exposing glycoproteins. Recently we defined a pool of intracellular H1 subunits of the asialoglycoprotein receptor (ASGPR) in the human hepatoma cell line HepG2 which appeared not to be involved in endocytosis (Stoorvogel, W., Geuze, H. J., Griffith, J. M....
متن کاملEndocytosis by the asialoglycoprotein receptor is independent of cytoplasmic serine residues.
The human asialoglycoprotein (ASGP) receptor, like most other plasma membrane receptors, has previously been shown to be phosphorylated at serine residues within the cytoplasmic domain. Phorbol esters, which activate protein kinase C, cause hyperphosphorylation and down-regulation of the ASGP receptor in HepG2 cells. To test the importance of serine residues for receptor traffic and function, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 109 شماره
صفحات -
تاریخ انتشار 1989